
A EXAMPLE FOR FORWARD AND BACKWARD K-OBSERVABILITY

Example (Refinement HMM) RHMMs [Stratos et al., 2013] can be considered as a special case of latent chain-CRFs
(e.g., Figure 1a) with directed edges (e.g., all edges in Figure 1a point from left to right). Let at and xt be vectors with
one-hot representation, and z a new variable such that z = a ⇥ s, where ⇥ stands for tensor product. Then, we can
define the transition matrix for z as Az , where Az[i, j] stands for the probability of transiting from zt = j to zt+1 = i.
Additionally, we can define a new observation matrix Cz , where Cz[i, j] stands for the probability of observing xt = i
given zt = j. With Az and Cz , we reduce the RHMM model to a HMM model, where Az and Cz are the transition and
observation matrices, while z and x are, respectively, the latent state and the observation. The observability condition for
HMM is well defined. Let us assume the HMM model is k observable with some constant k. This means that there exists
a bijective map between P (at, st | x1:t�1) and P (xt:t+k�1 | x1:t�1). Let us define such map as M here. First of all,
given P (st, at | x1:t�1), it is straightforward to compute P (at:t+k, xt:t+k�1 | x1:t�1) from the RHMM’s graphical model
itself. Secondly, given any distribution P (at:t+k, xt:t+k�1 | x1:t�1) resulting from some P (at, st | x1:t�1), to recover
P (at, st | x1:t�1), we can first marginalize P (at:t+k, xt:t+k�1 | x1:t�1) over at:t+k to get P (xt:t+k�1 | x1:t�1), and then
apply the HMM’s bijective map M to get P (zt | x1:t�1), which is P (at, st | x1:t�1) based on our definition.

Following the example of RHMM for forward k-observability, let us define the reversed transition matrix ¯Az , where
¯Az[i, j] stands for P (zt = i | zt+1 = j), which always exists and can be computed by using the Bayes rule with Az . With
¯Az and Cz , we have a new HMM, which runs in a backward fashion: from time step t + 1 to step t. Assuming that this

new HMM has k-observability, then we have a bijective map between P (at, st | xt:T ) and P (xt�k:t�1 | xt:T ). Given
P (at�k:t, xt�k:t�1 | xt:T ) resulting from some P (at, st | xt:T ), we can reveal P (at, st | xt:T ) by first marginalizing
at�k:t and, then, applying the bijective map of HMM to P (xt�k:t�1 | xt:T ) to get P (at, st | xt:T ). With P (at, st | xt:T ),
it is straightforward to compute P (at�k:t, xt�k:t�1 | xt:T ) from the RHMM’s graphical model itself.

B PROOF FOR LEMMA. 5.1
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where the first inequality comes from the fact that ka+ bk2 = kak2 +2aT b+ kbk2  2kak2 +2kbk2 for any vector a and
b. Following similar derivation, we can prove the conclusion for �vt .

Getting rid of Bayes error �m (�v) in general is difficult. Define the risk in Eq. 5 as l(F ) with respect to any hypothesis
F in F1. In the worst case, it is possible that there exist two different hypothesis F1 and F2 in F1 both globally minimize
the risk l(F ) due to the non-convexity of l(F ). Assuming in realizable case, F1 is the true underlying filter that generates
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C PROOF FOR THEOREM. 5.2
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which is the optimal hypothesis from F3 that minimizes the prediction error given the exact messages m⌧
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Now let us put expectation with respect to ⌧ back on both sides of the above inequality and use Jensen inequality, we have:
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where the first inequality comes from Jensen inequality. Since ˆG is the minimizer of E⌧⇠D
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Combine the above two inequality together, we have:
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Hence we prove the above theorem.

D PROOF FOR LEMMA. 5.3

Proof. The finite sample analysis for PSIM with Data Aggregation shows that given M training sequences, with probability
1� �, for Ff and Fb we have:
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where N is the number of iterations the PSIM used for learning Ff and Fb, �̂m and �̂n is the average of regret which
converges to zero as N ! 1, and ✏̂m and ✏̂v are the minimum regression error or classification error in hindsight on all
collected data with respect to the best hypothesis in the hypothesis class.

Now using the similar derivation as in the proof for lemma. 5.1, it is easy to show that with probability 1� �:
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E PROOF FOR THEOREM. 5.4

Proof. Remind that ˆdt represents the joint distribution of µ(m̂⌧
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⌧
t ) and a⌧t at time step t. With fixed F and F 0,
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trained on the first half dataset).

Due to the uniform bound from Rademacher theorem, we known that for the learned hypothesis ˆG, we have with probability
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where Rt(L) is the Rademacher number for the function class L = {(z, a) ! `(g(z), a); g 2 F3} under distribution ˆdt.
Let us define the above inequality as event At being true. The probability that all At being true for for 1  t  T is less
than (1� �0)T . Hence, we have with with probability at least (1� �0)T :
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Note that ˆG⇤ is the minimizer of the average risk :
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where ˆG is the corresponding empirical risk minimizer, we must have:
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Substitute the above inequality into the RHS of Inequality. 23, we have with probability (1� �0)T :
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Now for every time step t, let us re-apply the uniform bound from Rademacher analysis to ˆG⇤, we have with probability
(1� �0):
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Sum both LHS and RHS of the above inequality from t = 1 to T , we have with probability at least (1� �0)T :
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Now let us combine Inequality. 23 and 28 together, we have with probability at least (1� �0)2T :
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Now using the similar derivation for Theorem. 5.2 with the finite sample bounds for �m and �v as shown in Lemma. 5.3,
we will have with probability 1� �0:
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Now let us combine the above results together, we have with probability at least (1� �0)2T+1
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(ẑ⌧t ), a

⌧
t )] + 4

¯R(L) + 2

r
ln(1/�0)

2M

 1

T

TX

t=1

E⌧⇠D[`(G
⇤
(z⌧t ), a

⌧
t )] + 4

¯R(L) + 2

r
ln(1/�0)

2M
+O(

r
ln(1/�0)

MN
) +O(�̂m + �̂v + ✏̂m + ✏̂v + �m + �v).

(31)

Since (1� �0)2T+1 � 1� (2T + 1)�0, let �0 = �/(2T + 1) and substitute it back, we have with probability 1� �:
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Here we assumed that T is a bounded constant. When N ! 1, we have �̂m ! 0 and �̂v ! 0, hence, when the number
of iterations of DAgger approaches to infinity, we have with probability at least 1� �:
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Since we assume that the loss function ` is L1-Lipschitz continuous with respect to the first term, following the composition
property of Rademacher number, we will have that Rt(L) = L1Rt(F3). Substitute Rt(L) = L1Rt(F3) into the above
inequality, we prove the theorem.

F DETAILS OF THE ROBOTICS DATASETS

F.1 CART-POLE

The 4-d state q of cart-pole consists of the angular position and angular velocity of the pendulum, as well as the position
and velocity of the cart. The 1-d action is the force applied on the cart. The stochastic observation model returns the
relative position of the tip with respect to the cart.



F.2 BICYCLE BALANCING

The 7-d state q of the bicycle consists of !: angle from the vertical to the bicycle, !̇: angular velocity, ✓: angle of the
handlebars displacement, and ˙✓, and  : angle between the bicycle frame and the x-axis. The 2-d action consists of the
torque applied to the handlebar and the displacement of the rider. The stochastic observation model returns ✓ and ˙✓, subject
to Gaussian noise.

For the experimental setting where we have the latent state st, we move ˙✓ and !̇ to st, and leave ✓, ! and  for at. It is
straightforward, in this setting, to see that using multiple steps of future at is helpful, since we can estimate the velocity
information st from at+1 and at. The inference task (smoothing), here, is to predict at given all observations x1:T , without
any access to latent states st.

F.3 HELICOPTER HOVER

The 19-d state q of the helicopter consists of the 3-d position, relative to the desired hover position, 3-d velocity, 3-d angular
velocity in the helicopter’s coordinate, 4-d quaternion in world’s coordinate, and an additional 5-d vector modelling the
gusts. The observation model returns the 3-d position and the corresponding velocity in the world coordinate, subject to
Gaussian noise.

For the experimental setting where we have the latent state st, we partition the full state q into two sets: at consists of 3-d
position and 4-d quaternion; st consists of 3-d velocity, 3-d angular velocity, and the 5-d vector modelling the gusts.

F.4 SWIMMER

The swimmer has 3-links, and its state q consists of the 2-d position of the nose, relative to the goal, 2-d angles, 2-d velocity
of the nose, and 3-d angular velocities. The 3-d action consists of torques applied on the 3 links. The observation model
returns the position and velocity of the nose in the swimmer’s body coordinate, subject to Gaussian noise.

For the experimental setting where we have the latent state st, we partition the full state q into two sets: at consists of
2-d position of the nose and 2-d angles, while the latent state st consists of the 3-d velocity of the nose and 3-d angular
velocities.


