
Introduction to ROS

R. Capobianco, D. Nardi

02/10/2014 Introduction to ROS

What is ROS?

ROS (Robot Operating System) is an open-source,

flexible framework for writing robot software.

Site: http://www.ros.org/

Blog: http://www.ros.org/news/

Documentation: http://wiki.ros.org/

Suggested OS: Ubuntu 14.04

Suggested release: Indigo

02/10/2014 Introduction to ROS

ROS Features

«Why ROS instead of OROCOS, Player, Robotics

Studio, (…)?»

• Code reuse (exec. nodes, grouped in packages)

• Distributed, modular design (scalable)

• Language independent (C++, Python, Java, …)

• ROS-agnostic libraries (code is ROS indep.)

• Easy testing (ready-to-use)

• Vibrant community & collaborative environment

02/10/2014 Introduction to ROS

Robot Specific Features

• Standard Message Definitions for Robots

• Robot Geometry Library

• Robot Description Language

• Preemptable Remote Procedure Calls

• Diagnostics

• Pose Estimation

• Localization

• Mapping

• Navigation

02/10/2014 Introduction to ROS

ROS Tools

• Command-line tools

• Rviz

• rqt (e.g., rqt_plot, rqt_graph)

02/10/2014 Introduction to ROS

Integration with Libraries

ROS provides seamless integration of famous

libraries and popular open-source projects.

02/10/2014 Introduction to ROS

Installation

3 possibilities for installing ROS:

• Install ROS from source (not recommended):
– http://wiki.ros.org/indigo/Installation/Source

• Install ROS from Debian packages:
– http://wiki.ros.org/indigo/Installation/Ubuntu

• Install virtual machine (Ubuntu 14.04 + ROS):
– https://drive.google.com/file/d/0B6Nvp-

r2hOVvWE1BSlBPbGl3XzA/edit?usp=sharing

– Virtualbox instructions:

http://www.virtualbox.org/manual/ch01.html#ovf

– Login: user indigo password indigo

 02/10/2014 Introduction to ROS

Post Installation

You must initialize the rosdep system in your

system:

sudo rosdep init

rosdep update

rosdep is a tool for checking and installing package

dependencies in an OS-independent way.

Note: do not use sudo for rosdep_update

02/10/2014 Introduction to ROS

ROS Filesystem

• Packages: unit for organizing software in ROS.

Each package can contain libraries, executables,

scripts, or other artifacts.

• Manifest (package.xml): meta-information

about a package (e.g., version, maintainer,

license, etc.) and description of its dependencies

(other ROS packages, messages, services, etc.).

http://wiki.ros.org/catkin/package.xml

02/10/2014 Introduction to ROS

package.xml (1)

<?xml version="1.0"?>

<package>

<name>my_package</name>

<version>1.0</version>

<description>My package description</description>

<!-- One maintainer tag required, multiple allowed, one

person per tag -->

<maintainer email=“my@mail.com">Roberto

Capobianco</maintainer>

<!-- One license tag required, multiple allowed, one

license per tag. Commonly used license strings: BSD, MIT,

Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->

<license>BSD</license>

02/10/2014 Introduction to ROS

package.xml (2)

<!-- Url tags are optional, but mutiple are allowed, one

per tag. Optional attribute type can be: website,

bugtracker, or repository -->

<url type="website">http://wiki.ros.org/my_package</url>

<!-- Author tags are optional, mutiple are allowed, one per

tag. Authors do not have to be maintianers, but could be --

>

<author email=“my@mail.com">Roberto Capobianco</author>

<!-- The *_depend tags are used to specify dependencies.

Dependencies can be catkin packages or system dependencies.

Use build_depend for packages you need at compile time. Use

buildtool_depend for build tool packages. Use run_depend

for packages you need at runtime. Use test_depend for

packages you need only for testing. -->

02/10/2014 Introduction to ROS

package.xml (3)

<buildtool_depend>catkin</buildtool_depend>

<build_depend>message_generation</build_depend>

<build_depend>roscpp</build_depend>

<build_depend>roslib</build_depend>

<run_depend>message_runtime</run_depend>

<run_depend>roscpp</run_depend>

<run_depend>roslib</run_depend>

<!-- The export tag contains other, unspecified, tags -->

<export>

<!-- You can specify that this package is a metapackage

here: --><!-- <metapackage/> -->

<!-- Other tools can request additional information be

placed here -->

</export>

</package>

02/10/2014 Introduction to ROS

Catkin vs Rosbuild

ROS build systems: catkin, rosbuild (old, do not

use rosbuild if not needed).

«So, why are you talking about rosbuild?»

Some packages are still developed for rosbuild.

Main differences between catkin and rosbuild:

http://wiki.ros.org/catkin_or_rosbuild

02/10/2014 Introduction to ROS

Catkin Workspace Configuration

$ source /opt/ros/indigo/setup.bash

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/src

$ catkin_init_workspace

$ cd ~/catkin_ws/

$ catkin_make

Open ~/.bashrc and add the following lines:

ROS

source ~/catkin_ws/devel/setup.bash

02/10/2014 Introduction to ROS

Catkin Workspace (1)

workspace_folder/ -- WORKSPACE

 src/ -- SOURCE SPACE

 CMakeLists.txt -- The 'toplevel' Cmake file

 package_1/

 CMakeLists.txt

 package.xml

 ...

 package_n/

 CMakeLists.txt

 package.xml

 ...

02/10/2014 Introduction to ROS

Catkin Workspace (2)

 build/ -- BUILD SPACE

 CATKIN_IGNORE -- Keeps catkin from walking

 this directory

 devel/ -- DEVELOPMENT SPACE (set by

 CATKIN_DEVEL_PREFIX)

 setup.bash \

 setup.zsh |-- Environment setup files

 setup.sh /

 env.bash

 etc/ -- Generated configuration

 files

 include/ -- Generated header files

02/10/2014 Introduction to ROS

Catkin Workspace (3)

 lib/ -- Generated libraries and

 other artifacts (bin included)

 share/ -- Generated architecture

 independent artifacts

 ...

 install/ -- INSTALL SPACE (set by

 bin/ CMAKE_INSTALL_PREFIX)

 etc/

 include/

 lib/

 share/

 env.bash

02/10/2014 Introduction to ROS

Catkin Workspace (4)

 setup.bash

 setup.sh

 ...

02/10/2014 Introduction to ROS

Rosbuild Workspace Configuration

Catkin and rosbuild workspaces can coexist (if

needed).

Add to ~/.bashrc also:

export

ROS_PACKAGE_PATH=~/path/to/your/rosbuild/wor

kspace/:$ROS_PACKAGE_PATH

Additional info:

http://wiki.ros.org/rosbuild

http://wiki.ros.org/rosmake

02/10/2014 Introduction to ROS

catkin_make

• catkin_make is a convenience tool for

building code in a catkin workspace

• Execute catkin_make in the root of your catkin

workspace

• Running the command is equivalent to:

$ mkdir build

$ cd build

$ cmake ../src -DCMAKE_INSTALL_PREFIX=../install -

DCATKIN_DEVEL_PREFIX=../devel

$ make

02/10/2014 Introduction to ROS

Building Specific Packages

• If you want to build specific packages in the

workspace, invoke (always in the root of the

worskspace):

$ catkin_make -DCATKIN_WHITELIST_PACKAGES="pack-

age1;package2"

For reverting back:
$ catkin_make -DCATKIN_WHITELIST_PACKAGES=""

• If you want to build a single package, invoke:
$ catkin_make --pkg my_package

02/10/2014 Introduction to ROS

Installing Packages

• You can pass to catkin_make arguments that

you would normally pass to make and cmake.

For example, you can invoke the install target:

$ catkin_make install

Which is equivalent to:
$ cd ~/catkin_ws/build

If cmake hasn't already been called

$ cmake ../src -DCMAKE_INSTALL_PREFIX=../install -

DCATKIN_DEVEL_PREFIX=../devel

$ make

$ make install

02/10/2014 Introduction to ROS

Listing and Locating Packages

rospack allows to get information about packages:

• Listing all ROS packages:
rospack list

• Find the directory of a single package:
rospack find package-name

• When you don’t know (remember) the complete

name of the package, you can simply use tab

completion for package names.

Hands on: find the roscpp package

02/10/2014 Introduction to ROS

Inspecting Packages

• To view the files in a package directory:
rosls package-name

• To go to a package directory:
roscd package-name (also without package name)

• These tools will only find ROS packages that are

within the directories listed in your

ROS_PACKAGE_PATH. To see what is in this
variable, type: echo $ROS_PACKAGE_PATH

Hands on: list all the images in the turtlesim

package; try roscd without a package name

02/10/2014 Introduction to ROS

Creating Packages

• A package must contain:

– A catkin compliant package.xml

– A CMakeLists.txt which uses catkin

• No nested packages are allowed (one per folder)

• You can create metapackages

You should have created this!

$ cd ~/catkin_ws/src

catkin_create_pkg <package_name> [depend1] [depend2]

[depend3]

$ catkin_create_pkg my_first_pkg std_msgs rospy roscpp

02/10/2014 Introduction to ROS

Checking Dependencies

• Packages can have direct or indirect

dependencies

• Direct dependencies can be checked with:
rospack depends1 package-name

• A full list of dependencies is available with:
rospack depends package-name

• System dependencies for a package package-

name can be solved: rosdep install package-name

Hands on: list all the dependencies in

my_first_pkg

02/10/2014 Introduction to ROS

CMakeLists.txt (1)

• CMake version 2.8.3 or higher

• Your CMakeLists.txt file MUST follow this format

otherwise your packages will not build correctly:
– Required CMake Version (cmake_minimum_required)

– Package Name (project())

– Find other CMake/Catkin packages needed for
build (find_package())

– Message/Service/Action Generators (add_message_files(),

add_service_files(), add_action_files())

– Invoke message/service/action generation
(generate_messages())

02/10/2014 Introduction to ROS

CMakeLists.txt (2)

– Specify package build info export (catkin_package())

– Libraries/Executables to build (add_library() /

add_executable() / target_link_libraries())

– Tests to build (catkin_add_gtest())

– Install rules (install())

• If you have self-defined messages / services / actions,

remember:

– You must follow the order presented here (in particular before the
catkin_package() macro) in order for generate stuff correctly

– Your catkin_package() macro must have a CATKIN_DEPENDS

dependency on message_runtime

– You must use find_package() for the package

message_generation, either alone or as a component of catkin

02/10/2014 Introduction to ROS

CMakeLists.txt (3)

– Your package.xml file must contain a build dependency on
message_generation and a runtime dependency on

message_runtime. This is not necessary if the dependencies are

pulled in transitively from other packages.

– If you have a package which builds messages and/or services as

well as executables that use them, you need to create an explicit

dependency on the automatically-generated message target so that

they are built in the correct order, e.g.:

add_dependencies(some_target

${PROJECT_NAME}_generate_messages_cpp)

02/10/2014 Introduction to ROS

Metapackages (1)

• Useful for grouping multiple packages in a single

logical package

• Conceptually similar to rosbuild stacks, but no

strict hierarchy in directory structure

• Normal package with the following tag in the

package.xml:

<export>

 <metapackage />

</export>

02/10/2014 Introduction to ROS

Metapackages (2)

• Required buildtool_depends dependency on catkin

• Can only have run dependencies on packages of

which they group

• Required CMakeLists.txt:

cmake_minimum_required(VERSION 2.8.3)

project(<PACKAGE_NAME>)

find_package(catkin REQUIRED)

catkin_metapackage()

• Other packages should not depend on

metapackages

02/10/2014 Introduction to ROS

The master (1)

(One of) The goal(s) of ROS is to enable the use of

small and mostly independent programs (nodes), all

running at the same time. For doing this,

communication is needed. By providing naming and

registration services, the ROS master, enables the

nodes to locate each other and, therefore, to

communicate.

• To execute it, launch this command: roscore

• The master MUST be always running while using

ROS.

02/10/2014 Introduction to ROS

The master (2)

What the master does:

• Naming

• Registration

• Publisher and Subscriber tracking (both for

services and messages)

• Parameter server

What the master does not:

• Nodes do not communicate through the master

02/10/2014 Introduction to ROS

Nodes (1)

• Running instance of a ROS program

• Starting a node:
rosrun package-name executable-name

Hands on: run an instance of turtlesim_node

and turtle_teleop_key (hint: you need 3

terminals); focus on the terminal with
turtle_teleop_key and press the Up, Down,

Left, Right keys to move the turtle

02/10/2014 Introduction to ROS

Nodes (2)

• Listing running nodes:
rosnode list

– /rosout is a node started by roscore (similar to std

output)

– / indicates the global namespace

– Node names are not necessarily the same as the names

of their executables. You can explicitly set the name of a
node using rosrun:

rosrun package-name executable-name __name:=node-

name

Hands on: list nodes in the previous exercise

02/10/2014 Introduction to ROS

Nodes (3)

• Inspecting a node (list of topics published and

subscribed, services, PID and summary of

connections with other nodes):
rosnode info node-name

• Kill a node (also CTRL+C, but unregistration may

not happen)
rosnode kill node-name

• Remove dead nodes:
rosnode cleanup

02/10/2014 Introduction to ROS

Topics and Messages

• Communication in ROS through messages

• Messages are organized in topics

• A node that wants to share information will publish

messages on a topic(s)

• A node that wants to receive information will

subscribe to the topic(s)

• ROS master takes care of ensuring that publishers

and subscribers can find each other

• Use of namespaces

02/10/2014 Introduction to ROS

Viewing the Graph

• Graphically intuitive, easy to visualize the publish-

subscribe relationships between nodes:
rqt_graph

• rqt_graph itself appears as a node

• All nodes publish on the topic /rosout (not the

node!) subsribed by the node /rosout

• Topics without a subscriber (or a publisher) are

possible (not both)

Hands on: analyze the graph of the previous

exercise
02/10/2014 Introduction to ROS

rqt_graph

02/10/2014 Introduction to ROS

Messages and Topics

• Listing active topics:
rostopic list

• You can see messages published on a topic:
rostopic echo topic-name

• Checking publishing rate and bandwidth

consumed:
rostopic hz topic-name

rostopic bw topic-name

• Inspecting a topic (also message type)
rostopic info topic-name

02/10/2014 Introduction to ROS

Messages and and Message Type

• Inspecting a message type (structure of the

message):
rosmsg show message-type-name

• Data types of composite fields are message types

in their own (useful for preventing code
duplication)

• Message types can also contain arrays with fixed

or variable length (show with square brackets)

Hands on: check the structure of all the

messages in the topics of the previous exercise
02/10/2014 Introduction to ROS

rqt_plot

• Data published on topics can be time plotted

02/10/2014 Introduction to ROS

Publishing Messages from Terminal

• Useful for debugging

• Publish message from terminal:
rostopic pub –r rate-in-hz topic-name message-type

message-content

• The message content can be tabbed once the
message type is chosen

Hands on: publish a velocity command at 1Hz

rate to the /turtle1/cmd_vel topic and plot the

position and velocity of the turtle

02/10/2014 Introduction to ROS

Services (1)

• Realize request/reply communications

• Defined as a structure composed by a pair of

messages (one for the request and one for the

reply)

• A providing node or provider offers a service

• A client interested in a service sends a request

and waits for a reply

02/10/2014 Introduction to ROS

Services (2)

• Display all services of a specific type: rosservice find
service-type

• List of services: rosservice list

• Print information about a specific service: rosservice info
service-name

• Display the node that provides a particular service:
rosservice node service-name

• Display the type of a service: rosservice type service-
name

• Call a service from the command line: rosservice call
service-name service-args

• rossrv is similar to rosmsg

 02/10/2014 Introduction to ROS

Creating Messages and Services (1)

• Messages (Services) in ROS are .msg (.srv) files stored in
the corresponding package folder, within the msg (srv) dir.

• Supported field types for both are:

– int8, int16, int32, int64 (plus uint*)

– float32, float64

– string

– time, duration

– other msg files

– variable length array [] and fixed length array [C]

– Header: timestamp and coordinate frame information

• srv files have two different message definitions, separated
by ---

02/10/2014 Introduction to ROS

Creating Messages and Services (2)

Example of msg:
Header header

string child_frame_id

geometry_msgs/PoseWithCovariance pose

geometry_msgs/TwistWithCovariance twist

Example of srv:
int64 A

int64 B

int64 Sum

02/10/2014 Introduction to ROS

Hands on: create a message
Num.msg with field num of type

int64; create a service

AddTwoInts.srv and build the

package

Parameters

• Hierarchy matching the namespaces

• rosparam for setting and reading parameters
rosparam set param-name

rosparam get param-name

• Parameters can also be listed or deleted
rosparam list

rosparam delete param-name

Hands on: explore and use services of the

turtlesim node

02/10/2014 Introduction to ROS

roslaunch

• Launch file usually bring up a set of nodes
(roscore is automatically launched by

roslaunch)

• Uses XML files that describe the nodes that should

be run, parameters that should be set, and other

attributes

• Details at: http://wiki.ros.org/roslaunch/XML

Hands on: create a launch file launching two

turtlesim nodes

02/10/2014 Introduction to ROS

Bags and rosbag

• Serialized message data in a file

• rosbag for recording or playing data
rosbag record –a Record all the topics

rosbag info bag-name Info on the recorded bag

rosbag play --pause bag-name Play the recorded bag, starting

paused

rosbag play -r #number bag-name Play the recorded bag at

rate #number

Hands on: record a bag while you are

teleoperating the turtlesim, then kill every node;

start again the turtlesim node and play the bag

02/10/2014 Introduction to ROS

Checking for Problems

• Useful when ROS is not behaving the way you

expect:
roswtf

• Broad variety of sanity checks (e.g., examination

of environment variables, installed files, running

nodes)

• Details at: http://wiki.ros.org/roswtf

02/10/2014 Introduction to ROS

Homework (1)

• Follow the ROS beginner tutorials:

– Build and run the “Simple Publisher and Subscriber”

– Build and run the “Simple Service and Client”

• Modify the talker node and the listener node

– Publish the message Num (created earlier) on topic
oddNums:

• the message Num should be sent if the variable count is odd

• Num should contain the value of count

– Additionally subscribe to topic oddNums

– Create a callback function oddNumsCallback to print the
content of the received message

 02/10/2014 Introduction to ROS

Homework (2)

• Create a package with a client and a server.

– The server should take in input a service with an integer
and an array of strings and return an array of strings,
that are substrings of the corresponding input strings

– The client should input a sequence of strings and
request a service

02/10/2014 Introduction to ROS

